Лабораторный блок питания с микроконтроллерным управлением О...25,5 В с двойной защитой (ч1) - Блоки питания - Источники питания - Каталог статей - RADIOAMATOR
Изобретатель радио Вторник, 06.12.2016, 10:08
RADIOAMATOR
Поиск позывных в российском Callbook'e:
ON-LINE поиск предоставлен сервером QRZ.RU

Приветствую Вас Гость | RSS
Выбрать язык / Select language:
Ukranian
English
French
German
Japanese
Italian
Portuguese
Spanish
Danish
Chinese
Korean
Arabic
Czech
Estonian
Belarusian
Latvian
Greek
Finnish
Serbian
Bulgarian
Turkish
Поиск по сайту
Меню сайта
Категории раздела
Блоки питания [41]
Ремонт блоков питания [21]
Зарядные устройства [21]
Регуляторы мощности [13]
Преобразователи напряжения [10]
Защита [19]
Стабилизаторы переменного тока [4]
БП для трансивера [8]
Аккумуляторы [6]
Стабилизаторы постоянного тока [4]
Умножители [2]
Друзья сайта
Главная » Статьи » Источники питания » Блоки питания

Лабораторный блок питания с микроконтроллерным управлением О...25,5 В с двойной защитой (ч1)
Лабораторный блок питания с микроконтроллерным управлением О...25,5 В с двойной защитой
В.Д. Котик, г. Львов
Рано или поздно перед радиолюбителем возникает проблема изготовления универсального блока питания (БП), который имел бы достаточную надежность, регулируемое в широких пределах выходное напряжение, контроль от чрезмерного потребления тока и, конечно, защиту.
Каждый решает эту проблему по-своему. Вариантов построения источников питания не счесть. Вниманию читателей предлагаю еще один - с управлением на микроконтроллере. Он отличается качественной индикацией, доступной элементарной базой, отсутствием специализированных микросхем обвязки, надежной защитой от нештатных ситуаций и при этом легким в повторении и простым в эксплуатации.
Предлагаемый читателям БП вполне доступен для изготовления радиолюбителями, которые имеют минимальные знания в микропроцессорной технике, т.е. владеют алгоритмами «прошивания» готовых программ в микроконтроллер (МК) или могут обратиться к друзьям, способным им в этом помочь. В остальном - придерживайтесь принципов работы с микросхемами и, безусловно, не забывайте о правилах безопасности.
Несмотря на простоту конструкции, данный БП обладает следующими техническими характеристиками:
 
Такая идея возникла после желания построить новый БП с учетом реалий и развития современной элементарной базы.
При проектировании радиолюбительского источника питания для домашней лаборатории были поставлены следующие задачи:
• наличие цифровой индикации, с которой легкого считываются значения выходного напряжения и тока;
•  охватить наиболее используемый диапазон выходного напряжения от самого нуля;
•  отказаться от переменного резистора как регулятора выходного напряжения;
•  наличие защиты, как от короткого замыкания, так и запредельного режима выходного транзистора;
•  отображать не установленные, а реальные данные по напряжению и току;
•  с учетом «цифровой начинки» излучать минимальный уровень шума;
•  доступность элементной базы;
•  легкость в настройке и повторении;
•  себестоимость.
Анализ опубликованных ранее схем показал, что авторы используют современные узкоспециализированные микросхемы, которые далеко не всегда имеются в наличии, особенно в небольших городах. Попытки их замены другими наталкиваются на необходимость изменения в программе. Так же, для облегчения макетирования, авторы идут по более легкому пути, используя жидкокристаллические индикаторы, но они имеют ограничения по углу обзора и не при всех условиях хорошо читаемые. Это понижает реакцию пользователя на изменения показаний, притупляет внимание и иногда приводит к полной потере подключаемого устройства.
Источник питания состоит из трех частей: основного - цифрового модуля управления с индикацией (А1), аналоговой части (А2) и отдельного модуля питания всего блока (A3).
Описание принципиальной электрической схемы источника питания и логика работы
Принципиальная электрическая схема устройства показана на рис.1.
 
Основу цифровой части устройства составляет микросхема U1 фирмы AVR ATMEGA16 (4). В ее составе имеются 10-разрядные аналого-цифровые преобразователи (АЦП). Источником опорного напряжения 5 В для АЦП служит питание микроконтроллера (МК), поданное на 30 ногу через фильтр L1C4.
На МК возложены функции оцифровки выходного напряжения и тока через внутренний 10-битный АЦП, и вывод результата на шесть семи сегментных индикаторов, обработка клавиатуры, управление регулятором выходного напряжения, защита стабилизатора.
Для лучшей реакции пользователя индикация организована динамически на двух семи сегментных светодиодных индикаторах красного (напряжение) и зеленого (ток) цвета, объединяющих в себя по три разряда. Такой выбор цвета объясняется тем, что неконтролируемый рост значений напряжения всегда более опасен для нагрузки, чем изменение показаний амперметра, ибо последнее в автоматическом режиме отслеживается защитой.
Наличие шести индикаторов, управляемых портами МК, привело к тому, что пришлось применить буферную цепочку Т1-Т6 из 6 транзисторов р-n-р проводимости, уменьшающих до приемлемого значения ток через порты микроконтроллера.
К регистру порта РВ через восемь токоограничивающих резисторов R1-R8 включены соединенные в параллель сегменты шести индикаторов. К портам PDO-PD5 подключены транзисторы, активирующие конкретный разряд индикатора. Таким образом, процессор поочередно «засвечивает» каждый разряд индикатора и одновременно через порт РВО-РВ7 формирует изображение нужного числа.
Напряжение с выхода источника питания поступает для оцифровки на АЦП0 через резисторный делитель R49R50R51C9, коэффициент деления которого равен 5. МК производит выборки и затем определяет среднее значение. В качестве датчика тока, который потребляет нагрузка, используется мощный безындукционный резистор малого сопротивления R44. Величина падения напряжения на нем усиливается операционным усилителем DA2.2 и подается для анализа на АЦП1 МК.
Исходя из скорости обработки программы МК, опрос портов, в том числе клавиатуры, происходит циклически, без использования внутренних прерываний, что улучшает стабильность работы в целом. В случае не контролированного исчезновения питающего напряжения потери управляемости не наблюдалось и возрастания напряжения на выходе регулятора не фиксировалось.
Кнопки подключены к порту РА2, РАЗ, РА4. Их три: S1 - «+», в зависимости от величины шага, увеличивает значение выходного напряжения, S2 - «-» соответственно уменьшает. Кнопка S3 -«Плавно/грубо» определяет величину шага настройки. При включении - шаг составляет 0,1 В, при нажатии кнопки - увеличивается до 1,5 В. Повторное нажатие возвращает исходное значение, которое индицируется зеленым светодиодом LED2. Этот режим введен с целью быстрого ввода значений без утомительных нажатий кнопки «+». Шаг в 1,5 В выбран из соображения приближения к ряду питания низковольтной аппаратуры.
Таким образом, можно задать выходное напряжение с точностью в 0,1 В. Учтите, что БП не только измеряет реальное напряжение на выходе, но и задает его.
Указанный способ работы источника питания очень удобен в эксплуатации. Вы выставляете нужное напряжение, оно тут же выводится на клеммы и измеряется. При подключении нагрузки индикатор тока в реальном времени индицирует ток потребления. При ненормированной или нестабильной нагрузке напряжение выхода будет «проседать» или «прыгать», что немедленно отразится на индикаторах, а значит, привлечет внимание мастера к подключенному к нему устройству.
Следующим, не мене важном узлом, является цифроаналоговый преобразователь (ЦАП), который через порт РС0-РС7 управляет аналоговой частью устройства и формирует выходное напряжение. Из соображения доступности, простоты изготовления и уменьшения уровня излучаемых шумов использован так называемый R-2R ЦАП на R21-R37. Схема ЦАП, взята из открытых источников (1), неоднократно проверена и показала приемлемые характеристики.
Аналоговая часть схемы показана на рис.2
 
 и состоит из сдвоенного операционного усилителя DA1, который формирует напряжение управления выходными транзисторами и усиливает напряжение от датчика тока.
DA1.1 в связке с транзисторами Т7, Т9, Т10 осуществляют необходимое усиление по току и напряжению. Т7 и Т9 включен по схеме с общим эмиттером, а Т10 - с общим коллектором. У включения последнего транзистора есть неоспоримые достоинства: большое входное и малое выходное сопротивление, что очень важно в источнике питания. Схему с таким включением еще называют «эмиттерным повторителем». В целом схема работает следующим образом: выходной ток ОУ усиливается транзистором Т7, его коллекторный ток подается на базу Т9, а затем проинвертированный и усиленный сигнал управляет мощным транзистором Т10. По сути дела, Т10 является усилителем тока коллектора Т9, который увеличивает его в h21э раз Т10. Исходя из чего на месте Т9 можно использовать транзисторы средней мощности.
Питание операционного усилителя осуществляется однополярным положительным напряжением. Благодаря применению транзисторов разной проводимости удалось добиться минимальной разности входного и выходного напряжений и четкой управляемости системы в целом. Наличие резистора R42 в цепи эмиттера Т7 ограничивает его базовый и, главное, коллекторный ток на уровне около 30 мА. Коэффициент усиления по напряжению ОУ DA1.1 и транзисторов Т7, Т9, Т10 равен 1+R40/R39.
На DA1.2 собран усилитель напряжения датчика тока потребления нагрузки - резистора R44. Коэффициент усиления по напряжению ОУ DA1.2 равен 25. Резистор R48 и D2 представляют собой простейший стабилизатор, задача которого состоит из защиты порта РА1 от возможного перенапряжения, ограничивая входное напряжение на уровне в 5,1 В. Аналогично используется D1 и R49 для порта РА0.
На элементах R51, R54, R53, Т8 собран электронный предохранитель. Он введен, исходя из того, что время реакции МК может быть недостаточным для блокировки биполярного транзистора при быстротечной перегрузке системы. Ток срабатывания определяет R54 и в небольших пределах регулирует R53. Максимальный ток срабатывания защиты - 2 А, что не даст возможности выйти из строя транзистору Т10.
Если падение напряжения на R54, которое зависит от тока потребления, превысит величину, равную приближенно 0,6 В, транзистор Т8 откроется и предотвратит дальнейшее увеличение базового тока транзистора Т9, а вслед за ним и Т10. Ток нагрузки ограничится на безопасном для системы уровне. Использованная защита не имеет триггерного режима работы, а посему сразу после снятия короткого замыкания возвратится в исходное состояние. Таким образом, регулятор напряжения выдерживает возмущения выходного тока и в случаи короткого замыкания на клеммах, в том числе и импульсного характера.
Независимо от вышеуказанного электронного предохранителя на аналоговых элементах, который защищает источник питания от нагрузки, защита самой нагрузки возложена на МК, который в реальном времени следит за значениями выходного тока. Если этот показатель превысит заданную максимальную величину, он примет защитные меры, а именно: немедленно выключит ЦАП путем обнуления регистра порта PC, а также проинформирует пользователя миганием светодиода LED1. Отсутствие потенциала на резисторах ЦАП, а значит, и на входе DA1.1 закроет транзисторы регулятора. Напряжение на выходных клеммах будет снято - нагрузка отключена. В этом состоянии БП может находиться неограниченное время. Для возобновления подачи напряжения достаточно нажатиями кнопки S1 выставить необходимое выходное напряжение. При превышении указанных режимов защита автоматически сработает опять. Таким образом, в этом источнике питания используется две независимые петли защиты: быстродействующая - аналоговая на транзисторе Т8 и «контролирующая» - цифровая на U1.
 
Питание схемы показано на рис.3 и состоит из двух микросхем VR1, VR2 и цепей выпрямления, а также фильтрации. Стандартная схема включения пояснений не требует, кроме R58 мощностью в 1 Вт, наличие которого не обязательно, но с ним значительно лучший тепловой режим работы стабилизатора VR2 на 5 В.
Детали и конструкция
U1 -МКАVR АТМЕGА16А-16РPU или АТМЕGА16L.
Если от микроконтроллера никуда не уйдешь, то остальные детали - практически «ширпотреб», которого всегда в достатке. Детали блока не критичны к замене.
При построении ЦАП, безусловно, наилучшим вариантом был бы R-2R ЦАП в гибридном корпусе на одном кристалле. При его отсутствии, используйте резисторы в SMD исполнении или обычные, но обязательно возьмите каждый из номиналов из одной партии (коробки). Таким образом, будет максимально соблюдена линейность преобразования. Практика эксплуатации показала его стабильность и легкость реализации.
Индикаторы применены импортные типа GNT-3631BG, GNS-3611BD, но можно использовать и аналогичные отечественные, а также одиночные типа АЛС321Б или АЛС324Б, но обязательно с общим анодом.
Буферные транзисторы ВС478 заменяются любыми транзисторами малой мощности, что имеются в наличии, с соблюдением расположения выводов и проводимости, в том числе КТ209, КТ502 с любым буквенным индексом.
Транзисторы Т7, Т8 - импортные малой мощности, но можно установить КТ203, КТ208, КТ315 и КТ361 соответственно. В этом случае обратите внимание на максимально допустимое напряжение коллектор-эмиттер в сравнении с напряжением питания после диодного моста, если оно превышает 26 В. Т9 - КТ361, КТ801Б, КТ807Б. Т10 - средней мощности КТ803А, КТ814, КТ805, КТ808А или любой мощный с допустимым током коллектора не менее 2 А и допустимым напряжением коллектор-эмиттер больше напряжения питания. Испытано использование в качестве выходного составного транзистора по схеме Дарлингтона TIP110. Транзистор Т10 желательно выбрать с большим статическим коэффициентом передачи тока базы. Т10 установлен на радиаторе площадью 400 см2. Если Ваш радиатор мал, то установите вентилятор от компьютера.
Резисторы - датчики тока С5-16В, мощностью 5... 10 Вт. Мощность токозадающих резисторов из соображения надежности сознательно увеличена.
Конденсаторы на плате А1 - керамические, желательно в SMD исполнении. Электролиты в стабилизаторе - К50-12.
Операционный усилитель можно попробовать заменить TLC2272, TLC2262 или аналогичным. Подстроечные резисторы из серии СП5, СПЗ-19б.
Стабилизаторы питания на 5 и 18 В работают без радиатора, при наличии R58. Диодная сборка на 2 А или любые выпрямительные диоды с допустимым прямым током в 2 А и обратным напряжением не менее напряжения на вторичной обмотке трансформатора. Если использовать трансформатор на 24 В переменного напряжения, то или германиевые с малым прямым падением напряжения и обратным не менее 30 В или современные Шотки. Светодиоды можно применить любого типа.
Габаритная мощность трансформатора должна быть не мене 60 Вт, выходное переменное напряжение от 25 до 35 В, 2 А. При большем напряжении не смогут работать стабилизаторы VR1, VR2.
Конструктивно изготавливается на 3-х или 2-х платах. В последнем случае блоки А2 и A3 сведены в один. Такая конструкция даст возможность быстрой модернизации блока в будущем путем замены устаревшей части, а также облегчит наладку.
Сборка и наладка
Правильно собранный БП начинает работать сразу, но нужно учесть следующее.
В цифровой части распайку платы провести без МК, вместо которого установить 40-выводную панельку. Можете установить 6-штырьковый
разъем для внутрисхемного ISP программирования (JMP1-JMP3). Катушку L1 и конденсатор С4 расположите как можно ближе к МК. Разводку платы произведите так, чтобы шина питания схемы и МК шла «звездочкой» с одной точки, чтобы не было «сквозного» тока через выводы микроконтроллера.
«Зашейте» программу в микроконтроллер. Внимательно отнеситесь к выставлению фьюзов, иначе введете его в «нокаут». Если этот этап проводите впервые, то сначала почитайте соответствующую литературу. «Прошитый» контроллер засветит нули в индикаторе, и будет реагировать на прикосновение пальцами к портам АЦП, высвечивая разные цифры. Подав через резисторы в сотню Ом на РА0, РА1 5 В от его же питания, получите соответствующие показания на индикаторах.
Аналоговую часть можно собирать всю сразу и начинать налаживать отдельно, без цифровой платы. Запаяйте все резисторы, конденсаторы и диоды. Впаивать цепочку транзисторов после DA1.1 поочередно с обязательным измерением тока коллектора Т7. Проконтролируйте, чтобы он не достиг значения больше 30 мА. Иначе меняйте очередной транзистор на другой, аналогичный или меньшей мощности (важен h21э). Если это условие не соблюсти, то резистор R2 придется уменьшать до десятков Ом, и он превратится в «печку». После этого ставим в панельку LM358. Убедившись в работоспособности усилителя напряжения, приступайте к электронному предохранителю на Т8. При нагрузке в 2 А он должен «реагировать» и блокировать выходную мощность на безопасном уровне.
Начальная настройка показаний вольтметра и амперметра производится по показаниям тестера. На 2 ногу DA1 подается 5 В от стабилизатора питания и подстроечным резистором R50 выставляется 5 В при выходном напряжении в 25 В.
Движком резистора R47 выставляете на выходе 7 DA1 1,5В при нагрузке в 1,5 А.
Когда вся цепь по напряжению работоспособна, выставляем верхнюю границу напряжения, в зависимости от входного напряжения от трансформатора, с помощью R40. Имейте в виду, что если при статической нагрузке «дергаются» показания индикаторов, значит, система возбуждается. Это может быть как следствием ошибок или неверной разводки аналоговых цепей на плате, так и недостаточной мощности обмоток трансформатора.
Теперь можно соединить все части воедино и произвести окончательную настройку - согласование указанными ранее подстроечными резисторами.
Вопросы по построению источника питания можно задать автору на электронный адрес kotyk7@uk.net.
РА №3, 2011
Литература
1.  Стабилизатор напряжения 0...25,5 В с регулируемой защитой по току. // Радио. - №8. - 2007.
2.  Гребнев В.В. Микроконтроллеры семейства AVR фирмы ATMEL
3.  Голубцов М.С.  Микроконтроллеры AVR от простого к сложному
4.  Datasheet ATMEGA16А-16PU - Atmel Даташит 1C, 8-бит 16К FLASH Микроконтроллер.
Категория: Блоки питания | Добавил: admin (27.04.2011)
Просмотров: 12142 | Рейтинг: 2.7/3
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа

Наша кнопка сайта

Радиолюбителям и электрикам схемы, программы и т.д.

Код кнопки

 

Locations of visitors to this page

 

Статистика

Онлайн всего: 11
Гостей: 11
Пользователей: 0

Счётчик тиц Все для радиотехника! Информационная поддержка ремонта теле-видео-аудиоаппаратуры Сайт :: Паятель.at.ua - статьи и простые схемы, конструкции для начинающих и профессионалов. Сервер радиолюбителей России - схемы, документация,
 соревнования, дипломы, программы, форумы и многое другое! Всё для начинающих. Сборки сабвуферов для машин. Сборки сабвуферов для дома. Лаборатория. Электроника. Программы расчета. Выставка сабвуферов.

Copyright MyCorp © 2016Сайт создан в системе uCoz